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Abstract—Minimally invasive surgery can benefit greatly from
the safety and navigation capabilities offered by soft robotics.
In this report, we review the development steps of a kinematic
model of a one-degree-of-freedom soft actuator. We designed a
pneumatic actuator with an integrated strain sensor that deforms
through a strain-limiting layer. We manufactured it using spe-
cially designed molds. In addition, we placed a pressure sensor
at the inlet of the pneumatic actuator. The radius was calculated
using an iterative algorithm acting on images provided by a
camera placed in front of the actuator. The system was operated
with an existing pressure station, to which a PI controller was
added. The three specified modalities - strain, pressure, radius
- provide a representation of the actuator state and a massive
amount of data has been collected with different pressure input
scenarios. Future work includes training an LSTM array using
the data collected by the experimental apparatus.

Index Terms—soft robotics, surgery, perception, design, con-
trol.

I. INTRODUCTION

Recent advances in soft robotics have opened up many

possibilities for minimally invasive surgery and endoscopy. In

particular, actuated soft bodies constitute a safer and more

dexterous tool than current steerable catheters. Their inherent

deformability frees them from the traditional constraints of

rigid bodies and allows them to perform complex and compli-

ant movements in confined spaces. This physical adaptability

ensures the robustness of the device and the safety of surgical

operations [1]. In addition to their improved navigation ca-

pabilities, soft robots hold the promise of future autonomous

actuators relieving professional practitioners of critical tasks.

These challenging tasks require a sufficient understanding

of the underlying kinematics and dynamics of the robotic

system in order to derive a reliable control strategy. However,

the intrinsic non-linear properties of the soft material and the

infinite number of degrees of freedom have made it difficult to

formulate a suitable mathematical model [2]. However, recent

works [3] [4] with data-driven techniques have shown promis-

ing results which allows to bypass many of the difficulties

encountered in modeling the soft robot dynamics.

Perception precedes action, which means that any controlled

system relies on an internal representation of its own state to

perform the required actions. The quality of this perception

often affects the performance of the control system, especially

in critical applications such as minimally invasive endoscopy.

State estimation can be achieved through multi-modal sensing,

combining proprioceptive and exteroceptive, active and pas-

sive, and/or embedded and external sensors. The combination

provides information on the robot itself as well as on the

environments in which it operates.

Fig. 1: Soft actuator

The present work aims at building an internal representation

of the actuator to be used in a feedback loop. Specifically,

this paper describes the development of an experimental setup

needed to develop such a real-time sensory system for a soft

endoscopic device based on extensive data collection. The

system collects pressure and deformation data from the flexible

actuator and uses an external camera to calculate the radius of

curvature from the images, while keeping track of the timing

between samples. The report concludes with the plan and

future prospects for the continuation of the project, namely

training the model. All codes and designs are available upon

request from the authors.

II. MATERIALS AND METHODS

Our approach relied on a custom designed soft planar pneu-

matic actuator with an embedded commercial strain sensor

composed of a single pressure channel. Experiments were

carried based on three feedback components: the pressure in

the chamber p, the strain ϵ measured in terms of voltage

by the strain sensor, and a computed radius of curvature r

extracted from images via an algorithm. Together, they allow

for a representation of the internal state of the actuator.

The low-level pneumatic actuation was handled by a mod-

ified pressure board inspired by the Soft robotics Toolkit [5].

A micro-controller board acted as intermediate between the

computer and pressure board. It recorded pressure and strain

sensor readings from the actuator at a sample rate of 1 kHz and

sent back the current sample when requested to the computer

while computing the new signal for the pressure station board



Fig. 2: General overview of the system.

based on its PI controller. In parallel, instant images were

processed by the computer to extract the instantaneous radius

of curvature. Simultaneous data collection was achieved by

issuing a request to send a sample of data from the computer

to the microcontroller. A general overview of the experimental

set-up is shown in Figure 10. The sample rate was set at 10

Hz for the entire dataset.

A. Actuator fabrication and sensor embedding

Fig. 3: Physical soft actuator (left) - CAD molds model (right)

A conventional fabrication process has been used by design-

ing 3D printed PLA mould whose dimensions were chosen

arbitrarily to accommodate resources availability and overall

set-up design. The actuator was fabricated out of a common

silicon material (Ecoflex-50, Smooth-on Inc.) based on two

distinct layers dictated by the moulding process: a semi-

cylindrical top layer containing a cylindrical actuation chamber

of 9 mm diameter and a rectangular plate-shaped bottom layer.

A strain limiting layer in form of a sheet of paper has been

added below the latter in order to constrain the bending motion

in one direction and prevent any extension of the actuator. A

4.5” commercial Flex sensor was placed on top of the lower

layer, as indicated by the small cut-out extruded onto the

mould during the curing process. This position far from the

neutral axis of the actuator guarantees a large range of sensor

readings. A small amount of silicone was poured between

the two layers to take advantage of the inherent adhesion of

silicone to bind them together. A view of the actuator along the

molds is shown in Figure 3. Silicone tubing was inserted into

the pressure chambers to ensure appropriate sealing. Special

attention was paid to the sealing and removal of the actuator

from the mould.

The embedded Flex sensor was a simple resistive strain

sensor. The variable resistor was soldered on a protoboard

to a voltage divider with a 20kΩ resistor along a single-sided

operational amplifier whose output voltage is used. The sensor

electrical schematics is represented on Figure 4.

Fig. 4: Strain sensor circuit schematics.

B. Actuation and internal controller

The current work used an already existing pressure station

present in the lab shown in Fig. 5 using a dedicated custom

board driven by an ATmega328P chip. Air is injected into

the chambers using a 12V diaphragm pump and 3/2-way

valves whose frequency were fixed at 30Hz due to mechanical

constraints.

An analog differential pressure transducer coupled with an

instrumentation amplifier has been calibrated using a reference

Bourdon tube pressure gauge as shown in Figure 6. Pressure is

measured at a sample rate of 1kHz at the inlet of the actuator

chambers. We assume pressure uniformity with respect to the

actuator. The air flow was controlled via the PWM duty cycle

of the valves which ranges from 0 to 70%.

A sample step response for a 35% duty cycle is shown

on figure 7. This initial underdamped system showed a initial

rising time of about 15 sec. To track the reference pressure

at any given time and reduce the significant rise time, a pro-

portional integral (PI) controller based on the pressure sensor

signal and running at 50Hz has been tuned and implemented

on an ATmega2560. The board communicates over two serial

channels set-up to 115200 bit per seconds: one to receive



Fig. 5: Pressure station

reference pressure command from the computer and the other

to send the adjusted PWM command to the pressure station.

The rise time have been reduced by 67% to 3 seconds

thanks to the PI controller. The usual derivative term of the

PID controller was left off due to mechanical constraints. The

high frequency component of the signal caused the valves to

respond abruptly due to the derivative action which could

damage the system components. Despite the improvement,

Figure 8 still shows a high frequency part of the signal coming

from the valve oscillations, which is not negligible compared

to the required accuracy. On the inspection of the power

spectrum generated by the discrete Fourier transform of the

signal as shown in Figure 9, we designed a first-order low-

pass filter with a selected cut-off frequency ωc at 100Hz whose

transfer function is the following:

H(s) =
Y (s)

X(s)

=
ω0

s+ ω0

(1)

with s a complex variable.
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Fig. 6: Differential sensor calibration
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Fig. 7: System step response

For the hardware implementation, the discrete transfer func-

tion is computed using Tustin’s approximation [6] which

allows from a continuous to a discrete representation of the

filter by injecting

s =
2

t

z − 1

z + 1
(2)

into the transfer function (1) where t is the sample time and

z a complex variable:

H(z) =
ω0

2

t
z−1

z+1
+ ω0

=
ω0t(z + 1)

2(z − 1) + ω0t(z + 1)

=
ω0t(z + 1)

(2 + ω0t)z + ω0t− 2
(3)

The transfer function is made causal and its terms can be

further reorganised in the following form:

H(z) =
ω0t

2+ω0t
+ ω0t

2+ω0t
z−1

1 + ω0t−2

2+ω0t
z−1

A linear difference equation for the digital filter can be

obtained by applying the Z-transform on the transfer function:
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Fig. 8: PI controlled signal
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Fig. 9: Power spectrum

(1 +
ω0t− 2

2 + ω0t
)Y [z] = (

ω0t

2 + ω0t
+

ω0t

2 + ω0t
)X[z]

Y [n] +
ω0t− 2

2 + ω0t
Y [n− 1] =

ω0t

2 + ω0t
X[n] +

ω0t

2 + ω0t
X[n− 1]

Y [n] =
ω0t

2 + ω0t
X[n] +

ω0t

2 + ω0t
X[n− 1]

−

ω0t− 2

2 + ω0t
Y [n− 1] (4)

The recursive equation is applied to the raw measurements

before entering the internal controller. Figure 10 shows an

example of the resulting system response.

C. Radius extraction algorithm

Compared to other approaches found in the literature we

decided to track the radius of curvature itself instead of a

reference point. In order to reconstruct the kinematic body of

the actuator, we needed to take into account the longitudinal

expansion resulting from the bending which directly affects

the radius of curvature. We considered a constant curvature of

the actuator, e.g. the radius is ”constant in space but variable

in time” [7].

We mounted the actuator with the tip facing backwards

against gravity. The soft body was in front of a black back-

ground to facilitate the processing of the images. We used

Fig. 10: Controlled system with first-order low-pass filter.

a C920 Pro HD 720p at 60 FPS for the recordings which

was calibrated to our applications and placed in front of the

actuator. The radius extraction algorithm as well as the overall

data collection system was written in C++.

An image was captured from the video feed and undistorted

according to the calibration. To reduce noise and unnecessary

details, the image was blurred with a 7x7 kernel matrix and

greyed out. We applied a binary threshold to the resulting

frame followed by an erosion. The latter is a morphological

operation which allows to shrink the shape contained in the

image. The skeletonization of the shape was achieved by

applying the Zhang-Suen thinning algorithm [8]. However, the

processing reduced the video feed down to an average of 4

FPS, well below the 10 Hz requirements. We solved this issue

by using a greater kernel with a matrix size of 31x31 in the

erosion process, which reduced extensively the pixel number to

be processed by the thinning algorithm. Overall, we achieved

achieved a steady average of 18 FPS.

We retrieved the m 2D non zero points (xi, yi) for i =
1, ...,m from the resulting binary frame that represents the

skeleton of the actuator. Under the constant curvature assump-

tion, this skeleton is the arc of a circle of radius R, whose

equation is parameterized as follows:

R2 = (x− cx)
2 + (y − cy)

2

R =
√

(x− cx)2 + (y − cy)2 (5)

where c = (cx, cy) is the center of the circle.

To fit the circle passing through the set of points, we

minimize the squares of the distance between the data points

and the fitting circle centered at c. We formulate our objective

function as a unconstrained non-linear least square optimiza-

tion problem:



Fig. 11: Radius extraction process from raw images.

Ri =
√

(xi − cx)2 + (yi − cy)2 for i = i, ...,m

minimize

m
∑

i=1

∥

∥

∥
Ri − R̂

∥

∥

∥

2

with R̂ =
1

m

m
∑

i=1

Ri

(6)

We used Levenberg–Marquardt algorithm [9] for each frame

to find the center c = (cx, cy). The radius of the circle

is computed by taking the mean of the radii of each data

sample computed with Equation (5) and the found center. The

initial guesses used were always the mean of the initial binary

coordinates.

A depiction of the entire radius extraction procedure is

shown in Figure 11. The process implementation revealed a

frame rate lying in the range [11-15], which is the limiting

time of the experimental set-up.

III. RESULTS

In order to test the system and its capabilities, a pseudo-

random sequence of pressure inputs was introduced into the

system. This allows for the real-time retrieval of a massive

amount of data, a sample of which is shown in figure 13.

Each data sample is timestamped accordingly.

As shown in Figure 14, each sensor contains its own set

of outliers that must be removed during data cleaning. We

also notice the appearance of hysteresis effects. This shows

the importance of multi-modality in such applications. Indeed,

outliers are unavoidable due to environmental or unpredictable

factors but hysteresis effects completely change the determi-

nation of the actuator state. Therefore, the perceptual model

must account for these exceptions, hence the preference for a

data-driven method.

Fig. 12: Experimental set-up



Fig. 13: Sample actuator pressure, strain and radius data over time.

Fig. 14: Direct comparisons of modality samples.

It can be noticed that the different phenomena have non-

linear relationships between them, as expected from the com-

plexity of the phenomena. However, it should be noted that

the data collected and the results obtained reflect only the soft

actuator designed in this project. The realization of another

actuator, even with the same characteristics, will generate new

non-linear relations with the same data-driven method.

IV. CONCLUSION

Unlike their mechanical counterparts, soft robots offer the

possibility to exploit the advantages of data-driven techniques

instead of the usual theoretical modeling to model their

inherently complex dynamics. The current setup demonstrated

real-time data recording and processing capabilities. However,

some limitations may have been introduced that, if removed,

could have resulted in a more accurate system which includes,

but not limited to:

• On one hand, the system would have performed better

accuracy with a commercial motion capture system such

as OptiTrack instead of handcrafting a recognition algo-

rithm. On the other hand, such system is expensive and

deriving useful experiments from a camera permits better

replication among the scientific community.

• The pressure sensor resolution was limited to 0.1 bar,

which was fairly high when considering to the perceived

change of pressure.

• The Levenberg–Marquardt algorithm is an iterative al-

gorithm converging only towards local minimum, which

may or may not be a global minimum.

The developed system opens many possibilities for the next



phase of the work. One of them is the training of a predictor

by an LSTM network, a type of artificial recurrent neural

networks. Indeed, the temporal relationships between samples

cannot be expressed by an ordinary neural network and will

require a ”memory” since the state of the actuator at a given

time depends on previous states. Such a predictor could be

used as the basis for the estimation of the system state and

constitute the internal model of the actuator.
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