STUDY OF A MINIATURIZED SOFT **BENDING ACTUATOR FOR SURGICAL ENDOSCOPY**

*Gilles Decroly¹, Benjamin Mertens¹, Pierre Lambert², Alain Delchambre¹

¹Université Libre de Bruxelles, BEAMS department, Belgium

²Université Libre de Bruxelles, TIPs department, Belgium

WE NEED ACTUATED NAVIGATION TOOLS

WE HAVE MANY SOLUTIONS

- Soft actuated catheters could become an alternative to current steerable catheters
- **Softness** minimizes the risk of damage to tissues

Miniaturization enhances possibilities to navigate in confined space and to reach remote locations

Many solutions allow actuation or change of stiffness via a stimulus

FLUIDIC ACTUATION IS SAFE AND INNOVATIVE

WORKING PRINCIPLE

λ		
′ \		

IMPLEMENTED ACTUATOR

Increasing

the pressure

A NUMERICAL MODEL IS DEVELOPED

Simulation @ 0,20 bar

The numerical model captures the behaviour of the actuator The bending and the blocking forces are overestimated

- The limiting fibre can be replaced by **an endoscopic device**, typically the leads of a camera
- **The constant cross-section** simplifies the design and assembly
- The soft silicone body is **moulded** using Ecoflex 0030, and thread is used as limiting fibre

The actuator achieves a **radius** of curvature smaller than 10 **mm** and develops a **blocking** force around 40 mN at 0,35 bar

THE SOLUTION SHOWS PROMISING R

- > There is no theoretical limitation to **miniaturization**
- > The maximal bending stiffness of the limiting fibre can be identified

AN OPTIMISED DESIGN IS PROPOSED

- The ratio between the pressure channel surface and the actuator cross-section surface should be maximized
- Simulation showed promising results concerning the feasibility of an optimized 3 mm diameter actuator with two degrees of freedom

Further work will consist in implementing and characterizing the optimized design

